Role of permeability and storage in the initiation and propagation of natural hydraulic fractures

نویسندگان

  • David F. Boutt
  • Laurel Goodwin
  • Brian J. O. L. McPherson
چکیده

[1] Joint sets within sedimentary basins are commonly interpreted to have formed by tensile failure in conditions where pore fluid pressure was elevated. Such tensile fractures are inferred to be a part of the process that relieves high fluid pressure by locally increasing rock permeability. In spite of the importance of this feedback mechanism, the detailed mechanics of hydraulic fracture genesis remain poorly understood. We describe the results of both experimental and numerical studies of hydraulic fracture genesis on the basis of an experimental protocol that combines rock extension with elevated pore fluid pressure such that the hydraulic fracture criterion is met in the sample interior. This is achieved by simultaneously dropping both minimum stress and external pore fluid pressure, inducing a large fluid pressure drop between the sample interior and its ends. Poroelastic modeling suggests that the pore fluid pressure is highest close to, but not at, the sample ends and is locally maintained at levels that meet the hydraulic fracture criterion for up to 50 s. Application of this experimental protocol to an impure sample of sandstone resulted in the generation of several hydraulic fractures subparallel to the maximum principal stress. Fracturing did not occur in a drained test on the same sample, demonstrating that the elevated pore fluid pressure was critical to fracture formation. To better understand the experimental results, we explore the role of rock permeability and storage on fracture processes using a numerical model that directly couples a lattice-Boltzmann model for fluid mechanics with a discrete element model for solid mechanics. Like the experiment, the numerical simulations produced opening mode fractures when operated to replicate the conditions of the experiment. Fractures preferentially occur in portions of the model inferred to be mechanically weak. Local fluid pressure gradients strongly influence the state of stress in the solids and thereby fracture growth. Increasing the model permeability increases fracture propagation rate, decreases sample deformation, and increases fracture spacing. Sample deformation increases, and fracture spacing decreases, with increasing overpressure. It appears that bulk forcing of the solid via fluid seepage forces is important in fracture genesis, explaining the key roles of permeability and diffusivity in the hydrofracture process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice numerical simulations of hydraulic fractures interacting with oblique natural interfaces

The hydraulic fracturing propagation is strongly influenced by the existence of natural fractures. This is a very important factor in hydraulic fracturing operations in unconventional reservoirs. Various studies have been done to consider the effect of different parameters such as stress anisotropy, toughness, angle of approach and fluid properties on interaction mechanisms including crossing, ...

متن کامل

Fracture Dynamic Propagation Model of High-Energy Gas Fracturing for Casing Perforated Well

The onshore oil and natural gas industries of China have started a large-scale development when crude oil reserves have been difficult to recover. The stratum fracture modification is an indispensable measure to efficiently develop oil and gas fields. Hydraulic fracturing is the most important reservoir stimulation technique, but it is still faced with various problems such as the failure to fr...

متن کامل

Feasibility Study of Network Hydraulic Fracture Applied to the Fissured Competent Sand Oil Reservoir

Chang 8 oil deposit, developed in Hohe and Jihe oil fields at the southern Yi-Shan Slop of Ordos Basin, is regarded as a kind of typical sand reservoir formation with super-low porosity, poor permeability, strong anisotropy as well as locally natural faults and fractures. The previous studies believed that matrix reservoir has a good permeability, whereas fracture reservoir has a reverse manner...

متن کامل

Behavior of a hydraulic fracture in permeable formations

The permeability and coupled behavior of pore pressure and deformations play an important role in hydraulic fracturing (HF) modeling. In this work, a poroelastic displacement discontinuity method is used to study the permeability effect on the HF development in various formation permeabilities. The numerical method is verified by the existing analytical and experimental data. Then the propagati...

متن کامل

Effect of Hydraulic Fracture on the Fractured Reservoir Based on the Connection with Natural Fractures

Hydraulic fracturing in the fractured reservoirs plays a significant impact on the production rate. In this study, the hydrostatic condition is taken into account, the hydraulic fracturing operation was applied in every direction usinga written distinct element code. In each direction the hydraulic fracture is applied with different lengths and in each level the amount of production is predicte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009